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Contact melting during sliding on ice 
A. J. FOWLER and A. BEJAN 

Department of Mechanical Engineering and Materials Science, 
Duke University. Durham, NC 27706. U.S.A. 

Abstract-This paper describes the water film that is formed as ice melts under a two-dimensional solid 
slider. The analysis is based on the contact melting theory, and accounts for the coupling between the heat 
transfer across the water tilm and the fluid mechanics of the film. The competition between pressure melting 
and frictional melting in the creation of the lilm. and the effect of slider thermal boundary conditions 
(isothermal vs adiabatic) are documented. The dimensionless groups that govern the film behavior are 
identified. The film thickness increases in the downstream direction. The water leaves the relative-motion 
area through the front opening and through the trailing opening. The slenderness ratio (thickness/length) 
of the water film depends on water properties and contact length. and is fairly insensitive to changes in the 
applied normal force. It is shown that if the presence of ice asperities is taken into account. the contact 
melting theory may anticipate the trend and order of magnitude of the coeflicicnt of friction determined 

experimentally. 

INTRODUCTION 

FRICTION on ice has attracted considerable attention 
from physicists and engineers during the last 100 
years. This work has been reviewed by Hobbs [I]. It 
is a controversial area that remains active because a 
purely theoretical basis for predicting the coefficient 
of kinetic friction is still out of reach. 

There have been two main theoretical views on 
sliding melting and friction on ice. Reynolds [2] sug- 
gested in an essay (without any analytical backing) 
that the water film that separates the ice and the slider 
is due to pressure melting, i.e. due to the peculiar 
property of ice that the melting point decreases as the 
pressure increases (Fig. I). Bowden and Hughes [3] 
offered order of magnitude calculations in support of 
a frictional melting (viscous dissipation) explanation 
for the formation of the water film. Evans et al. [4] 
contributed to this with an interface energy-balance 
analysis that included the effect of one-dimensional 
time-dependent conduction into the ice. The frictional 
melting view is more common today, even though 
additional explanations are being offered (e.g. 
adhesion theory [5]). 

In spite of everything that has been written on pres- 
sure melting vs frictional melting, there is no analytical 
description of the water film, nor of the competition 
between pressure melting and frictional melting in the 
maintenance of the film. The objective of the present 
study is to provide this description. The analysis con- 
sists of extending to ice melting the contact melting 
methodology that has been developed by several 
authors [6-171 in the fields of heat transfer and tri- 
bology. According to the contact melting theory, the 
melting and sliding-friction phenomenon is due to the 
coupling of the heat transfer across the film, with the 
melting at the ice surface, and with the fluid mechanics 

of the water film. It is a rigorous method that accounts 
for changes in the direction of relative motion. i.e. 
along the film. 

The problem of accurately predicting the coefficient 
of kinetic friction for skating is considerably more 
complicated than analyzing the continuous water film, 
and is beyond the objective of our study. The com- 
plications stem from the fact that most of the friction 
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FIG. I. Water film due to the pressure melting of ice under 
a slider (top), and the relationship between the melting point 

of ice and pressure (bottom). 
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NOMENCLATURE 

constant in the linearized Clausius- 
Clapeyron relation, 13.6 MPa Km ’ 
film slenderness scale, equation (21) 
B number based on X. equation (34) 
specific heat of ice 
constant of integration, equation (8) 
dimensionless constant of integration, 
equation (I 2) 
area fraction covered by contact melting 
normal force 
normal force per unit length, 
equation (17) 
normal force applied on X per unit 
length, equation (32) 
dimensionless normal force per unit 
length, equation (18) 
F” number based on X and F’,,,, 
equation (33) 
tangential force 
tangential force per unit length, 
equation (19) 
dimensionless tangential force per unit 
length, equation (20) 
tangential force applied on X per unit 
length, equation (32) 
dimensionless function, G = H * 
water film thickness, Fig. I 

kr 
k 
L 
N 
P 
pll 
P 

latent heat of melting 
liquid thermal conductivity 
length of contact area, Fig. I 
number of asperities 
pressure 
ambient pressure 
dimensionless excess pressure, 
equation (10) 
volumetric flow rate per unit length, 
equation (3) 
pressure gradient, dP/d.u 
melting point 
temperature of the slider and the distant 
ice, Fig. 1 
liquid velocity components, Fig. I 
translational speed 
Cartesian coordinates, Fig. I 
macroscopic length of (rough) contact 
area. Fig. 9. 

Greek symbols 
P viscosity 
pr coefficient of friction, F;/Fk 
5 dimensionless longitudinal location, x/L 
P density, water or ice 
4 viscous heating parameter, 

equation (25). 

occurs over the small asperities that are present in the 
ice surface (Fig. 9). One must know the density. size, 
and shape of these asperities if one is to construct a 
conclusive theory on the coefficient of friction. On the 
other hand, the high-pressure sliding contact between 
each asperity peak and the solid slider does cause the 
flattening of the asperity. The pressure and friction 
between the flattened peak and the slider maintains a 
water film that provides the lubrication effect. The 
fluid mechanics and heat transfer of the water film 
must be understood, as an important component in 
an asperities-based, future theory for friction on ice. 

WATER FILM DUE TO PRESSURE MELTING 
ALONE 

Consider the two-dimensional configuration of Fig. 
I (top), in which a body of length L slides over the 
surface of a block of ice. The latter is assumed flat, 
i.e. without asperities. The relative motion is steady, 
with speed U (positive). The solid body (the slider) 
is pushed against the ice with the force Fk [N m- ‘I, 
which is expressed per unit length in the direction 
normal to Fig. 1. This model is equivalent to the 
reverse situation in which an ice spot (asperity) of 
length L slides over a flat solid body. The reverse 
situation is a model of contact melting at the peaks of 

ice asperities that make contact with a solid slider 
(Fig. 9). 

The slider and the bulk of the ice block are at the 
ice point T, = 0°C. The higher pressure maintained 
under the slider leads to the formation of a liquid film 
that bridges the temperature gap between the T, slider 
and the T,,, melting front. Because of the anomalous 
behavior of water (Fig. I, bottom), the melting front 
temperature falls below T,. 

The thickness of the water film, h(u), can be deter- 
mined by solving the Reynolds equation for the 
lubricating water flow 

dP aJu -= 
dx Pip (1) 

in conjunction with the energy equation. Integrated 
subject to the boundary conditions u = 0 at y = 0 and 
u = U at y = h, equation (I) yields the longitudinal 
velocity in the water film 

u(x,y) = &(y’-hy)~+; u. (21 

The corresponding longitudinal flow rate is 

Q=%ndy=&(-$)+;I/. (3) 
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In the thin-film limit in which the Reynolds equa- 
tion is valid, the heat transfer in the liquid film 
approaches pure conduction in the vertical direction 
[l7]. In this limit the liquid temperature decreases 
linearly from To at y = 0 to T,,, at ,r = h. The vertical 
heat flux k(T,- T,)/h is balanced by the melting of 
the fresh ice that crosses the ice-water interface 

(4) 

This balance is based on the assumption that the 
sensible cooling experienced by the approaching 
ice, c,(T,,- T,,,). is negligible when compared with 
the latent heat of melting, h,,. The left-hand side 
of equation (4) can be expressed in terms of the 
local excess pressure (P-PO), by recalling the 
Clausius-Clapeyron relation dP/dT, = -A, in which 
A = -s&,r= -h,,/(T,p,,). In the vicinity of T,, 
A z 13.6 MPa K- ‘. Treating A as a constant, we can 
integrate the Clausius-Clapeyron relation in order to 
eliminate (To- T,,,) from equation (4) 

The conservation of mass in the liquid film region 
requires that 

(6) 

This equation is derived easily by integrating the mass 
conservation equation (I%/&+ I%/?$ = 0) from J’ = 0 
to ,I’ = /Z(X). Integrating equation (6) in X, and intro- 
ducing the constant C, we obtain 

Q(x) = uh(x)+C. (7) 

The problem reduces to solving equations (3), (5) 
and (7) for h(x), P(X) and Q(x). First, we eliminate 
Q between equations (3) and (7) 

(8) 

It is convenient to introduce the following dimen- 
sionless variables : 

so that the system (5), (8) reduces to 

and(l2)areP=Oat<=Oandt= I,statingthatthe 
liquid pressure matches the ambient pressure at the 
two ends of the liquid film. We solved equations (I I) 
and (12) numerically by first eliminating p 

d’ 
H’@H’)+ 12H+2c = 0. (13) 

NUMERICAL METHOD 

To understand the behavior of H it is useful to 
rewrite equation (I 3) as 

d’G I2 2c 
p= ---_- G cl/? (14) 

where G = H’. The conditions p = 0 at 5 = 0 and 
5 = I in conjunction with equation (I I) lead to the 
following boundary conditions : 

dG 
-=0 at t=O and <=I. 
d< (15) 

Since G can never be negative, it is easy to see that the 
boundary conditions (15) can never be satisifed if 
c 2 0, because the curvature d’G/dt’will be negative 
over the entire t region. Similarly, although less obvi- 
ous, equation (14) has only a trivial straight line solu- 
tion for c < -6. The wavelengths for oscillatory 
behavior are too large to allow for zero slope (equa- 
tion (15)) if c < -6. 

Equations (14) and (15) are satisfied for any nega- 
tive value of c by the constant G = (-c/6) ‘. From 
equation (I I), however, we note that 

(16) 

and conclude that the constant G solution (i.e. p = 0) 
corresponds to an unrealistic condition in which no 
normal force is applied to the slider. 

The domain of interest corresponds to -6 < 2; < 0. 
In this domain there are three distinct solutions for 
every single value of c. This aspect is illustrated 
qualitatively in Fig. 2. The solid line indicates the 
only solution that is realistic. The straight line cor- 
responds to zero normal force, as noted above. The 
dotted oscillatory solution (dG/dt < 0) corresponds 
to a negative p, as can be seen from equation (I 6). 
This solution would be meaningful if U were nega- 
tive, i.e. if the motion is reversed. The film H(i) pro- 

= 6H+S (12) 

in which z’is the dimensionless constant that accounts 
for C. The boundary conditions for equations (I I) 

FIG. 2. The three types of C(t) solutions of equations (14) 
and (15). 
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file that would correspond to this solution is simply 
the reverse (mirror image) of the /l(t) profile for 
positive U. which corresponds to the solid line in Fig. 
2. It must also be said that in addition to the wavy 
solutions illustrated in Fig. 2, equations (14) and (I 5) 
admit oscillatory solutions that peak more than once 
in the region 0 < c < I. These solutions were ruled 
out because they would correspond to alternating 
regions of negative pressure under the slider. 

Once the behavior of G(c) was understood. it was 
possible to discretize equation (l4), and to use the 
shooting method to generate a solution of the solid 
line type (Fig. 2). This solution was then used as the 
initial guess in a Newton-Raphson iteration scheme. 
The solution was iterated until the error in G at each 
node was less than IO- (‘. 

The discretization was second-order accurate. and 
the boundary conditions (15) were implemented using 
the mirror point method. The solutions proved to be 
stable to three decimal places using only 500 grid 
points; however, 2049 grid points had to be used in 
order to resolve graphically the steep slopes (dG/d<) 
for low values of C. 

The integration required by the tangential force 
(equation (20) in the next section) was performed 
using the Romberg method. which was modified to 
accept discrete data. The convergence criterion was 
set at IO-‘. The results of the Romberg method were 
checked against a simple application of the trap- 
ezoidal rule over all of the grid points. 

RESULTS 

The dimensionless film thickness is presented in 
Fig. 3. The lubricating film becomes thicker toward 

FIG. 3. The dimensionless thickness of the water film. 

the trailing end of the slider. Under the leading and 
trailing edges of the slider, the film thickness is nearly 
constant (dHjd< = 0 at c = 0 and 5 = I ; cf. equation 
( 15)). This variation of the liquid film thickness with 
longitudinal position distinguishes the phenomenon 
of sliding by pressure melting from the corresponding 
phenomenon in which the melt layer is due to an 
imposed temperature difference [ 171. In the latter, the 
liquid film thickness is constant. It is worth noting 
also that the dH/d< = 0 condition at 5 = 0 is not 
entirely visible on the curves for c = -0.5 and -I 
because of the poor resolution of the drawing (i.e. the 
tightness of the < scale near 5 = 0). 

We obtained one H(c) curve for each value of the 
constant of integration 2;. The latter is related to the 
total force maintained between the slider and the ice 
block 

s 

1. 
F:, = (P-P,)d.u (17) 0 

or, in dimenionless terms 

By comparing equations (l8), (I I) and Fig. 3 it is easy 
to see that Fk is a function of c. This monotonic 
relationship is presented in Fig. 4. By comparing this 
with Fig. 3. we see that the film thickness becomes less 
uniform (smaller near 5 = 0, and larger near 5 = I) 
as the normal force increases (or -c decreases). At 
the same time, and this is somewhat surprising, the <- 
averaged value of H is fairly insensitive to the large 
changes in the normal force. We return to this obser- 
vation in equation (21). 

The net tangential force experienced by the slider is L au 
F; = s 0 c/ a.y,.d 

ds (19) 

or, in dimensionless terms 

i 
-I 

0 1 2 3 4 5 6 

-6 

FIG. 4. The relationships of the integration constant c with 
the dimensionless normal force and tangential force. 
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The dimensionless parameter B is much smaller than 
1, because it represents the order of magnitude of the 
slenderness ratio of the liquid film 

B= (21) 

Note that the same group can be obtained by divid- 
ing by L the /I scale recognized in equation (9). 
($L’/plr,,A) IfJ. It is remarkable that the slenderness 
scale group B depends only on water properties and 
the contact length L, and not on the normal force. 
For example, using L = IO cm and the properties of 
saturated water at 0 C, we obtain B - 7 x 10m5. 

The lack of a strong relationship between normal 
force and liquid film thickness is another striking 
difference between pressure melting and the cor- 
responding sliding-contact melting process caused by 
an imposed temperature difference. In the case of 
melting due to a temperature difference, the film thick- 
ness varies as the normal force raised to the power 
- l/3; in other words, it decreases sensibly as the 
normal force increases (ref. [17], equation (17)). 

Figure 4 also shows the group F,/B as a function of 
the abscissa parameter -c. Since the only solution 
for ? = -6 is known to be a straight line at H = I. 
F” and p,/B can be calculated analytically. They are 0 
and I, respectively. As c approaches - 6, however. an 
oscillatory solution which is distinct from the straight 
line trivial solution becomes hard to find due to the 
small amplitude of the oscillations. As many as 10 000 
grid points were used to pick up solutions for c < - 5. 
The dotted lines represent the connection between the 
last numerically determined solution and the known 
analytical solution at r? = -6. 

By eliminating 2; between the two curves of Fig. 4 
we obtain the upper graph of Fig. 5 (the solid line. 
4 = 0, where 4 will be defined in equation (25)), which 
dhows the relationship between the tangential force 
and the applied normal force. As expected, the tan- 
gential force increases monotonically as the normal 
force increases. Since both p,,lB and p” are of order 1 
in this upper graph, we conclude that the smallness of 
F, (or F:) relative to i;, (or F’,) is governed by the film 
slenderness scale B. 

This conclusion is emphasized in the lower part 
of Fig. 5 (the solid line), on the ordinate of which 
we see the group (F,/p”)/B. Recall that the ratio 
F,/F” = F;/Fk is the friction coefficient, and note that 
for dimensionless normal forces of order 1 the ordi- 
nate group is nearly constant (approximately equal 
to 2). This means that when F” - O(l), the friction 
coefficient is approximately 2B, i.e. a number of order 
lOeJ when L = 10 cm. However, in order for p, to be 
of order 1, the actual normal force per unit speed 
(FJU) must be of order IO’ (N m- ‘)/(m s- ‘). 

There are clearly two conditions that would lead to 
this regime of very high Fb/U values: high F:, or 
small U. In situations of very small U, however, the 
assumption of no vertical velocity-an assumption 

6 

4 

2 

FIG. 5. The relationship between the tangential force. the 
normal force and the film slenderness scale B. The lower 
graph shows the friction coeficient i;,/F”:,. The dashed lines 
show the effect of viscous heating in the film (isothermal 

slider). 

that is implicit in equation (4)-becomes suspect. 
Objects moving very slowly in the horizontal direction 
might begin to sink into the ice [IS. 191. Conditions 
under which the friction coefficient is 2B, therefore, 
are those in which very heavy objects slide over ice at 
finite velocities. 

Figures 4 and 5 (the lower graph) show that as the 
normal force decreases to the limit where -c = 6, 
the friction coefficient F,‘,iF” tends to infinity. This 
unrealistic limit is due to the way in which the analysis 
was set up ; specifically, to the assumption that a liquid 
film covers the entire length L even as the normal force 
approaches zero. We had to make this assumption to 
invoke pressure conditions at the inlet and the outlet 
of the relative motion gap. Because of this assump- 
tion, the tangential force tends to a finite value in 
the limit of zero normal force. Future studies may 
consider refining the present theory by allowing for 
the disappearance of liquid in the inlet region as the 
normal force decreases. 

COMPARISON WITH EXPERIMENTAL 
MEASUREMENTS 

We were unable to find any experimental work in 
the regime of extremely high normal forces, which is 
hardly surprising. Figure 6. however, shows a com- 
parison with the experimental work of Oksanen and 
Keinonen [20]. These authors measured the coefficient 
of friction for ice sliding on ice at a variety of speeds 
and normal loads. This set of measurements was bet- 
ter suited for comparison with our predictions than 
other published experimental results-e.g. Bowden 
and Hughes [3] or Evans er al. [4]-because Oksanen 
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10-4 10-z 1 

F, 
FIG. 6. Comparison of experimental data with theoretical 
results. The insert shows the original (dimensional) exper- 

imental data. 

and Keinonen varied both the normal load and sliding 
speed at three different temperatures, including - I “C. 
Our analysis is based on the assumption that the ice 
is not subcooled. 

In plotting the data we have assumed that the ice 
surfaces are perfectly smooth, i.e. that the length X of 
the macroscopic contact area is the same as the water 
film length L. The effect of ice asperities on the plotting 
of the experimental data, and the good agreement 
with theory, is discussed in the concluding section of 
the paper. 

It is encouraging that our results qualitatively agree 
with experiment: extension of our theoretical curve 
into the regime of the experimental forces agrees in 
an order of magnitude sense with the experimental 
values. That our curve does not quite predict the slope 
of the curve in the experimental regime is under- 
standable. Our model relies upon the existence of fluid 
at the leading edge of the slider. This fluid layer at the 
leading edge can only be present if the pressures are 
such that fluid is actually forced out in front of the 
slider. In the experimental regime the pressures are 
not nearly high enough for that. 

More significant, moreover, is the monotonic 
relationship between the coefficient of friction and the 
dimensionless normal force that the experimental data 
indicate. These data represent measurements made at 
four different velocities and three different normal 
loads. The insert in Fig. 6 shows Oksanen and 
Keinonen’s data, before nondimensionalization. The 
straight line the data form once they have been trans- 
formed in our dimensionless parameters suggests that 
our normal force F” is the appropriate dimensionless 
group for analyzing skating at temperatures near the 
melting point, even in low force regimes. Oksanen and 
Keinonen’s results for sliding on subcooled ice (i.e. 

below - 1°C) did not form straight lines after trans- 
formation, indicating that our dimensionless force- 
which we derived while assuming the ice was not 
subcooled-is not an appropriate non-dimensional- 
ization for sliding on subcooled ice. 

WATER FILM DUE TO PRESSURE MELTING 
AND VISCOUS DISSIPATION 

We turn our attention to the limit in which the 
relative motion is sufficiently fast so that the viscous 
shearing of the liquid film generates enough heat to 
alter the pressure melting process discussed until now. 
The velocity distribution in the liquid and the flow 
rate continue to be described by equations (2) and 
(3). What changes is the energy equation for the 
liquid, which now contains the viscous heating effect 
as a source term 

(22) 

This equation has been simplified in accordance with 
the thin-film limit discussed above (equation (4)). It 
states that the liquid temperature is generally two- 
dimensional, T(x,y), because the longitudinal velocity 
distribution is two-dimensional, z&y). The transfer 
of heat proceeds vertically by conduction, and it 
involves the rejection (to y = h, or y = 0, or both) of 
the frictional volumetric heating rate ~(du/dy)~. 

Equation (22) can be integrated twice in y, after 
estimating &/ay based on equation (2). The resulting 
expression for Tis omitted for the sake of conciseness. 
It contains two ‘constants’ of integration, which are 
in fact functions of x. These are determined by invok- 
ing the two boundary conditions in the transversal 
direction, one at the melting front, T= T,,,(x) at 
y = h, and the other at the slider surface (y = 0). As 
far as the slider surface condition is concerned, we 
consider the following two extremes. 

Isothermal (high conductivity) slider 
In the limit in which the slider material approaches 

a perfect thermal conductor, the slider surface is iso- 
thermal and they = 0 boundary condition is T = TO. 
The resulting expression for the temperature dis- 
tribution in the liquid film is 

T-T,,, = &(h’-3h2y2+4hy3-2y4) 

+ 
RUh pU* 

-6k+2hk (y--h) 1 
(23) 

where R is shorthand for the pressure gradient, R = 
dP/dx. 

Beyond this point, the analysis follows the steps 
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outlined between equations (4) and (12). It begins 
with replacing the left-hand side of equation (4) with 
the actual heat flux ( -k r?r/@, at y = /I) calculated 
based on equation (22). It then relies on the linearized 
Clausius-Clapeyron relation to couple the melting 
point T,,,(X) to the local pressure in the film P(x), 
recognizes the conservation of mass (6). and the non- 
dimensional variables defined by equations (9) and 
(10). In the end, equation (12) remains intact, while 
equation (I I) assumes the new form 

P--H$+$[H2~+$($~+3]=0 (24) 

where 4 is a dimensionless viscous heating parameter 

By using the properties of water at OC, we find that 
c$= Ux0.011 s mm’, meaning that 4 exceeds the 
order of 1 when U becomes greater than 100 m s- ‘. 
If we compare equations (24) and (I I) we see that the 
sliding due to pressure melting alone (the first part of 
this study) represents the 4 + 0 limit of the more 
general problem considered in this section. 

Finally, by eliminating P’ between equations (12) 
and (24) we obtain 

H, d2(H2) F+12H+2C+;(4eH+C’)~=0 
4 4 

(26) 

which replaces equation (13). This was solved subject 
to the end conditions P = 0, which means that 

g+ A+$+& ( > (27) 

at 5 = 0, I. As in the first part of the paper, the numeri- 
cal procedure led to a parametric solution in terms of 
the constant c. Other numerical details are given in 
the next section. The c parameter was then elimin- 
ated, and the number of graphs reduced so that the 
results can be presented directly in terms of the physi- 
cal input variables, F” and 4. Figure 7 shows that in 

H I-@ 
0.5 

0 

FIG. 7. The effect of viscous heating on the water film thick- 
ness (isothermal slider, Ffl = I). 

the range 4 = O-l the frictional heating generated by 
the film has a negligible effect on the thickness (size, 
shape) of the water film. The same can be said 
about the effect of viscous heating on the friction 
coefficient. The dash curves projected in Fig. 5 show 
the small effect that r$ has on the tangential force and 
the friction coefficient. 

Adiabatic (ION- conductitrity) slider 
In the opposite extreme, where the slider material 

is a poor conductor. we can model the slider sur- 
face as adiabatic, ZT/r?j. = 0 at y = 0. The resulting 
expression for the temperature distribution 7J.u.j~) in 
the liquid film is omitted because it is the same as 
equation (26) in ref. [l4], although in the present case 
r, is a function of X. For the heat flux that arrives at 
the melting front (and replaces the left-hand side of 
equation (4)) this T(.u, Jo) expression yields 

By repeating the steps between equations (4) and (l2), 
we arrive again at equation (12) and, in place of equa- 
tion (I I), at 

Numerical results we obtained by first eliminating P 
between equations (12) and (28) 

(30) 

and imposing the integral condition 

(31) 

For both the isothermal and adiabatic sliders a 
shooting method was used. In the isothermal case, 
central differences were used except at the boundaries. 
Since central differencing of equation (26) results in a 
nonlinear equation for the value of the unknown grid 
point, each step was iterated until the change in con- 
secutive iterative values became less than IO- ‘. Simi- 
larly, the entire process was repeated until the bound- 
ary conditions were satisfied to within 1 x IO-‘. 

For the adiabatic slider, central differences resulted 
in numerical instability in the form of bounded oscil- 
lations. First-order accurate noncentered differences 
were therefore used and smooth solutions were 
achieved. In both cases. integration to find forces and 
pressures was performed using the trapezoidal rule. 
Grid refinement showed that 2000 grid points were 
sufficient to get values for F’, and F; that were stable 
to within I %. 

The results for the friction coefficient (p,/F”) are 



1178 A. J. FOWLER and A. BWAN 

1 

F. 
FIG. 8. The effect of the slider thermal boundary condition 

on the friction coefficient (4 = 0.5). 

reported in Fig. 8 (the solid line) for a given speed, 
4 = 0.5. The dashed line corresponds to the iso- 
thermal slider solution discussed in the preceding sec- 
tion, and shows that the character of thermal bound- 
ary condition at the slider surface has a negligible 
effect on the calculated results. By recalling the neg- 
ligible effect that was indicated by the dashed lines in 
Fig. 7, we conclude one more time that the viscous 
heating of the water film is a minor effect next to 
pressure melting in this regime of large normal forces, 
where F',/U is of order IO5 (N mm ‘)/(m s- ‘). 

An interesting feature of the adiabatic slider model 
is that all the melting is due to the frictional heating 
of the liquid film. This means that when the viscous 
dissipation effect becomes sufficiently small (4 + 0) 
the liquid film vanishes. In that limit, no ‘pressure 
melting’ occurs under the adiabatic slider regardless 
of the size of the imposed normal force. When the 
slider surface is adiabatic and viscous dissipation is 
negligible, the local slider temperature matches (drops 
to) the local melting front temperature, and the ver- 
tical temperature difference across the film becomes 
zero. The film vanishes because there is no heating 
effect (vertical temperature gradient) to sustain it. 

CONCLUDING REMARKS: THE EFFECT OF 
ICE ASPERITIES 

In this paper we determind analytically and numeri- 
cally the shape and properties of the water film 
between slider and ice. The method was the same as 
in earlier contact melting studies of regular substances 
[617]: at every x, the fluid mechanics of the film 
were coupled to the heat transfer across the film. The 
analysis revealed the proper dimensionless groups 
that govern the existence of the water film, and the 
relative importance of pressure and frictional effects 
in maintaining (feeding) the film. Specific conclusions 
were drawn at the end of each section that contained 
results. 

The main conclusion is that the applied normal 
force must be sufficiently large, or the individual 
asperities sufficiently rare and small, for the water film 
to cover the contact length L entirely. This require- 

ment is summarized in the dimensionless group F”;,, 
which must be of order I (Figs. 5 and 8) if the water 
film is to flow out of the relative motion gap through 
the front opening (x = 0) and through the trailing 
opening (x = L). 

The water film described in this paper is a step 
toward a theoretical understanding of friction on ice. 
For example, we can apply the present results to a 
single ice asperity of swept length L, average pressure 
FJL, and average shear stress F;/L. While it is true 
that the real asperity does not have the two-dimen- 
sional shape assumed in Fig. l-a better model for its 
flattened peak would be a disc of diameter L-the 
present results for friction coefficient agree within 
50% with the value reported in this paper for the two- 
dimensional contact area (this level of agreement was 
demonstrated in the analysis of sliding contact melt- 
ing over regular substances [ 171). 

Let X be the macroscopic length of the rough ice 
surface (Fig. 9). Assume further that the number of 
asperities over X is N. The coefficient of friction for 
the individual asperity (/Q = F:/F',) is the same as the 
apparent coefficient of friction for the X-long rough 
surface (NF;/NF', = pr). The total forces applied over 
the entire (rough) surface are 

Fb,x = NF: and F&= NF;. (32) 

We can now return to Fig. 6 and recognize the solid 
curve in the lower right-hand corner as the theory for 
the coefficient of friction pr. That curve was plotted 
in terms of dimensionless coordinates based on the 
asperity length L (note that B varies as L-l/*). The 
experimental data have been plotted on the same 
graph by assuming that the macroscopic surface is 
perfectly smooth, which is the same as replacing X 
with L. 

Consider now the possibility (certainty) that asperi- 
ties were present in the experiment. This means that 

FIG. 9. The effect of the ice asperity length on the agreement 
between the contact melting theory and experimental 

coefficient of friction measurements. 
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the asperity length L (unknown) that should have 
been used in nondimensionalizing the data was much 
smaller than the macroscopic length X. The infor- 
mation of Fig. 6 can be replotted in Fig. 9 by using 
the known length X of the rough surface as the length 
scale, and the actual (measured) forces Fb,.r and F;,, 

(33) 

(34) 

Figure 9 shows that in terms of the new dimen- 
sionless coordinates p”,.r and F;,,,/F’,,,y/B.y (or p,/B.r). 
the theory is represented by a family of curves accord- 
ing to two additional parameters, the length ratio L/X 
and the fraction of X that is associated with contact 
melting 

j; = NL X’ 

From this entire family, the curve that resembles the 
cluster of experimental data has an L/X ratio of order 
IO- I. and a contact melting area fraction ji of order 
5 x IO--‘. Future experimental studies may consider 
the question of whether these L/X and 1; values are 
supported by actual measurements. The L/X value of 
IO-’ would correspond to flattened asperities of 
length L - 0.2 mm in the experiment of Oksanen and 
Keinonen [20]. 

In conclusion, in order to anticipate the coefficient 
of friction, one must know not only the contact melting 
results developed in this study but also the size and 
density of ice asperities. 

Suhjecrs. Vol. 2. PP. 734738. Cambridge University 
Press (1901). 

3. F. P. Bowden and T. P. Hughes, The mechanism of 
sliding on ice and snow, Proc. R. Sm. Mu/h. Ph~~.s. Sci. 
172,280-298 (1939). 

4. D. C. B. Evans. 1. F. Nye and K. J. Chesseman, The 
kinetic friction of ice, Proc. R. Sot. Lond. A 347, 493- 
512 (1976). 

5. K. Tusima, Friction of a steel ball on a single crystal of 
ice, J. G/o&l. 19, 225-235 (1977). 

6. W. R. D. Wilson. Lubrication bv melting a solid, J. 
Luhricurion Tcchrml. 98, 22-26 (1976). - 

7. V. Bicego, A. Figari and G. Poletti. Lubrication of a 
melting slider under nonisothermal conditions. J. Luhri- 
rurior~ Techr7ol. 103, 436-442 (1981). 

8. F. E. Moore and Y. Bayazitoglu, Melting within a 
spherical enclosure. J. Hrcr~ Trorqfbr 104, 19-23 (1982). 

9. S. H. Emerman and D. L. Turcotte, Stokes’ problem 
with melting, 1~77. J. Hear Muss Tronsfb 26, 162551630 
(1983). 

IO. A. K. Stiffler. Friction and wear with a fully melting 
surface, J. Trihol. 106,416419 (1984). 

I I. M. Bareiss and H. Beer. An analytical solution of the 
heat transrer process during melting or an unfixed solid 
phase change material inside a horizontal tube. Ir7r. J. 
Heor Mms Trmrsfk 27, 739-746 (1984). 

12. M. K. Moallemi and R. Viskanta, Melting around a 
migrating heat source. J. HCWI Trmsfer 107, 451458 
(1985). 

13. M. K. Moallemi and R. Viskanta. Experiments on fluid 
flow induced by melting around a migrating heat source. 
J. Fluid Mech. 157, 35-51 (1985). 

14. M. K. Moallemi. B. W. Webb and R. Viskanta. An 
experimental and analytical study orclose-contact melt- 
ing. J. Heat Trons& 108, 894-899 (I 986). 

15. S. K. Roy and S. Sengupta. The melting process within 
spherical enclosures. J. Hea/ Transfer 109, 46&462 
(1987). 

16. B. W. Webb, M. K. Moallemi and R. Viskanta. Exper- 
iments on melting of unfixed ice in a horizontal cylindri- 
cal capsule, 1. Hcai Transfer 109,454-459 (1987). 

17. A. Bejan. The fundamentals of sliding contact melting 
and friction, J. Hear Transfer 111, 13320 ( 1989). 

18. A. Bejan and P. A. Tyvand, The pressure melting of ice 
under a body with flat base. J. Hear Tronsfir 114, 529- 
531 (1992). 

REFERENCES 
19. P. A. Tyvand and A. Bejan, The pressure melting of ice 

due to an embedded cylinder. J. Heu/ Tram)zr 114,532- 
I. P. V. Hobbs, Ice Physics. pp. 411421. Oxford Uni- 535 (1993). 

versity Press (1974). 20. P. Oksanen and J. Keinonen. The mechanism of friction 
2. 0. Reynolds. Papers on Mechunical and Ph.wicul of ice, Wear 78,315-324 (1982). 


